Finite Math - Spring 2017 Lecture Notes - 4/28/2017

## HOMEWORK

• Section 5.3 - 1, 2, 5, 6, 9, 17, 19, 21, 23, 25, 27, 35, 43, 50, 53

## Section 5.3 - Linear Programming in Two Dimensions: A Geometric Approach

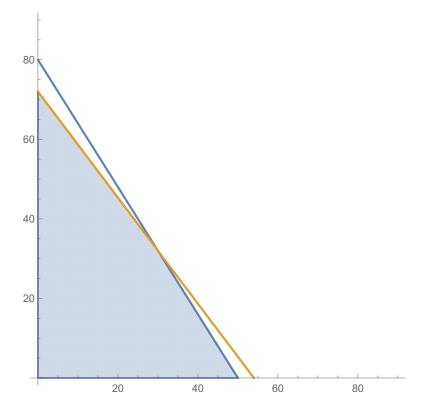
## Applications.

**Example 1.** An electronics firm manufactures two types of personal computers–a desktop model and a laptop model. The production of a desktop requires a capital expenditure of \$400 and 40 hours of labor. The production of a laptop requires a capital expenditure of \$250 and 30 hours of labor. The firm has \$20,000 capital and 2,160 labor-hours available for production of standard and portable computers.

- (a) What is the maximum number of computers the company is capable of producing?
- (b) If each desktop contributes a profit of \$320 and each laptop contributes a profit of \$220, how much profit will the company make by producing the maximum number of computers?
- (c) Does producing as many computers as possible produce the highest profit? If not, what is the highest profit and how many of each computer should be made in that case?

**Solution.** Let x = # of standard model and y = # of portable model. Let's find the feasible region for this problem before continuing. From capital, we get the inequality

$$400x + 250y \le 20000$$


and from labor-hours we get

$$40x + 30y \le 2160$$

and of course we add in

 $x, y \ge 0$ 

since a negative number of computers cannot be produced. The graph of the feasible region is



Observe that the feasible region is bounded. The corner points of the feasible region are

(0,0), (0,72), (50,0), (30,32).

(a) The amount of computers produced is simply

C = x + y

so to figure out the maximum number of computers the company is capable of producing we just have to maximize C. Test C at the corner points

| Corner Point | C value |
|--------------|---------|
| (0,0)        | 0       |
| (0, 72)      | 72      |
| (50, 0)      | 50      |
| (30, 32)     | 62      |

So to produce the largest amount of computers, they should produce 72 laptops and no desktops.

(b) The profit function is

$$P = 320x + 220y.$$

By producing the largest amount of computers, the company would make

320(0) + 220(72) = 15840 dollars

(c) To check if this gives the highest profit, we should check the profit function at all of the corner points.

| Corner Point | Profit   |
|--------------|----------|
| (0,0)        | \$0      |
| (0, 72)      | \$15,840 |
| (50, 0)      | \$16,000 |
| (30, 32)     | \$16,640 |

So we see that producing 30 desktops and 32 laptops will produce the highest profit for the company.

**Example 2.** A fruit grower can use two types of fertilizer in his orange grove, brand A and brand B. The amounts (in pounds) of nitrogen, phosphoric acid, and chloride in a bag of each brand are given in the table. Tests indicate that the grove needs at least 1,000 pounds of phosphoric acid and at most 400 pounds of chloride.

|                 | Brand A | Brand B |
|-----------------|---------|---------|
| Nitrogen        | 8       | 3       |
| Phosphoric Acid | 4       | 4       |
| Chloride        | 2       | 1       |

- (a) If the grower wants to maximize the amount of nitrogen added to the grove, how many bags of each mix should be used? How much nitrogen will be added?
- (b) If the grower wants to minimize the amount of nitrogen added to the grove, how many bags of each mix should be used? How much nitrogen will be added?

## Solution.

- (a) 150 bags brand A, 100 bags brand B, 1,500 lbs of nitrogen
- (b) 0 bags brand A, 250 bags brand B, 750 lbs of nitrogen